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Abstract

A linear instability analysis was conducted firstly on the interface of a stratified gas–liquid two-phase flow in a

circular piper employing a two-fluid model. The constitutive equations simulation technique was discussed, and the

dispersive equation of interfacial waves was derived. The effects of flow rates of gas and liquid, liquid viscosity, surface

tension and tube inclination on the stability of interface were investigated. A set of non-linear hyperbolic governing

equations was deduced from the complete two-fluid model equation by omitting the effect of the surface tension and

assuming a quasi-steady-state for the gas phase. Using characteristic line and finite difference, the propagation and

growth of the interfacial disturbances were investigated in terms of gas and liquid superficial velocities. Then the results

of the non-linear stability analysis were compared with those obtained by the linear stability analysis and experimental

data. The non-linear stability analysis not only confirms the conclusions reached by the linear instability analysis, but

also gives an insight into the growth and propagation of the interfacial disturbances on the interface of a gas–liquid

two-phase flow. � 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Gas–liquid two-phase flow; Interfacial waves; Linear and non-linear stability analysis; Characteristic line; Numerical

simulation

1. Introduction

Interfacial waves which exist on the interface of a

gas–liquid two-phase flow have a significant effect on the

heat and mass transfer of a two-phase flow, and also on

the pressure drop characteristics of the system. Obvi-

ously it is of importance to understand these phenom-

ena. As early as in 1950s, Banjamin [1], Miles [2],

Hanratty and Hershman [3], Hanratty and Engen [4]

noted and studied this kind of problem. One of the main

problems is the stability analysis of two-phase interface.

In the previous study, most of the researchers used in-

tegrated liquid momentum equations, as Hanratty and

Engen [4] and Jeffreys [5]. The effects of the gas phase on

the stability were considered as the boundary conditions

of the liquid momentum equations. Other researchers [6]

used the Navier–Stokes equations simplified according

to the problems. Recently, Brauner and Maron [7],

Barnea and Taitel [8] investigated interface stability by

using a two-fluid two-phase flow model.

In the present work, using a two-fluid model the

stability analysis was conducted for a gas–liquid two-

phase flow, and the constitutive equations were specially

discussed. The dispersive equation of interfacial waves

was derived, and the effects of flow and geometrical

conditions (such as tube inclination b) on the stability
were investigated.

A set of non-linear hyperbolic governing equations

was also deduced from the complete two-fluid model

equation by omitting the effect of the surface tension and

assuming a quasi-steady-state for the gas phase. The

propagation and growth of the interfacial disturbances

were investigated by using the numerical method in

terms of gas and liquid superficial velocities. The non-

linear stability analysis further confirmed the conclu-

sions reached by the linear instability analysis, and

provided a comprehensive understanding of the physical
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nature, specifically an insight into the growth and

propagation of the interfacial disturbances on the in-

terface of a gas–liquid two-phase flow.

2. Two-fluid model

Fig. 1 illustrates the configuration of a gas–liquid

two-phase stratified flow. Some assumptions were in-

troduced as

• no heat transfer between two phase;

• no mass transfer between two phase;

• both gas and liquid incompressible.

The one-dimensional integrated equations of two

fluid models are as follows:

o

ot
ðqkAkÞ þ

o

ox
ðqkAkukÞ ¼ 0; ð1Þ

o

ot
ðqkAkukÞ þ

o

ox
ðqkCku2kÞ

¼ �skSk � siSi þ qkgAk sinb � o

ox
ðAkpkÞ þ pik

oAk
ox

:

ð2Þ

Upper sign of ‘‘�’’ corresponds to the liquid phase. Ck is
the velocity shape factor of phase k, and it is defined
by

Ck ¼
1

Aku2k

Z Z
Ak

u002k dAk ; ð3Þ

Ck ¼ 1 [9] for plug flow, Ct ¼ 4=3 [10] for a very thin
turbulent shear layer, Ct ¼ 1:6 for thin turbulent shear
layer. In this work Ck ¼ 1. For simplification we assume
that the interfacial waves have a large wavelength

compared with the liquid film thickness. Therefore the

shallow water and shallow gas conditions can be met,

that means the pressure in phase k is only affected by the

hydrostatic head rather than the interfacial conditions.

So the pressure in phase k can be defined by

p0k ¼ pik � qkg cos bðy � hÞ; ð4Þ

pig 6¼ pi‘, if the surface tension, r, is considered, and the
difference is expressed as

o

ox
ðpig � pi‘Þ ¼ � o

ox
o2h
ox2

1

",8<
: þ oh

ox

� �2#2=39=
;: ð5Þ

Nomenclature

A cross-section, m2

Ak the area occupied by phase k ¼ 1; g
C friction factor, dimensionless

c wave velocity, m/s

D tube diameter, m

f see Eq. (7), N=m3

g gravity acceleration, m=s2

h liquid film thickness, m

h steady-state solution to liquid film thickness,

m

h0 small disturbance of h, m
_hh wave amplitude, m

K wave number, l/mp

p area averaged pressure, Pa

pik pressure on the interface, Pa

S wetted perimeter, m

Si interface width, m

t time, s

u area averaged velocity, m/s

u00k instantaneous velocity of phase k,
u0 small disturbance of u, m/s

u steady-state solution for velocity, m/s

ûu wave amplitude, m/s

x flow direction, m

y vertical to flow direction, m

b tube inclination, positive for down flow, �
C velocity shape factor, dimensionless

k wavelength, m

k	 non-dimensional wavelength ðk=DÞ
l dynamic viscosity, Pa s

m kinematic viscosity, m2=s
q density, kg=m3

r surface tension, N/m

s shear stress, Pa

s‘ interfacial shear stress, Pa

Kc‘ ordinate amplification factor

Subscript

g gas phase

I, R imaginary, real part

‘ liquid phase

s superficial

k phase k, k ¼ 1; g
i interface

Fig. 1. Configuration of gas–liquid two-phase stratified flow.
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From Eqs. (1), (2), (4) and (5) the combined two-phase

momentum equation is deduced:

q‘ð1



� C‘Þ
u‘
A‘

þ qgð1� CgÞ
ug
Ag

�
dA‘ oh
dh ot

þ ðq‘ � qgÞg cos b
oh
ox

þ o

ox
ðpi‘ � pigÞ

þ q‘

ou‘
ot

þ q‘C‘u‘
ou‘
ox

� qg
oug
ot

� qgCgug
oug
ox

¼ f ;

ð6Þ

where

f ¼ �s‘S‘=A‘ þ siSið1=A‘ þ 1=AgÞ þ ðq‘ � qgÞg sin b:

ð7Þ

3. Linear stability analysis

3.1. Dispersive equation of the interfacial waves

Introducing the following parameters:

h ¼ hþ h0;
u‘ ¼ u0‘ þ u0‘; ð8Þ
ug ¼ ug þ u0g;

where h; u‘; ug were obtained by solving the fully

developed stratified flow for a set of flow rates of the

two-phase flow, and h0; u0‘; u
0
g are the small distur-

bance values of h; u‘; ug, respectively. A small am-

plitude disturbance is imposed on the interface as

follows:

h0 ¼ heiKðx�ctÞ: ð9Þ

When c1 > 0, the small disturbances grow; c1 < 0, they
decay. Let c1 ¼ 0, and neutral stability condition is
obtained. The maximum Kc‘ corresponds to the ampli-
fication factor of the fastest growing waves.

For a small value of h0, the change of the film
thickness induces a linear response of u‘, ug, or

h0

h
¼ u

0
‘

ûu‘
¼
u0g
ûug

¼ eiKðx�ctÞ: ð10Þ

Substituting Eq. (10) into Eqs. (1) and (6) and omitting

the higher order of the small disturbance, we get the

dispersive equation of the interfacial waves as follows

(for the details, refer to [7], or [8]):

a1c2 � 2ða2 þ ia3Þcþ a4 þ ia5 ¼ 0; ð11Þ

where

a1 ¼ q‘A
0
‘=A‘ þ qgA

0
‘=Ag;

a2 ¼ q‘A
0
‘=A‘½1þ ðC‘ � 1Þ=2�u‘ þ qgðA0‘=AgÞ

� ½1þ ðC‘ � 1Þ=2�ug;

a3 ¼
1

2K
A0ioF
A‘ou‘

�
� A

0
‘oF
Agoug

�
;

a4 ¼ q‘

A0‘
A‘

C‘u2‘ þ qg
A0‘
A‘

Cgu2g � ½ðq‘ � qgÞg cos b þ rk2�;

a5 ¼
1

K
A0‘
A‘
u‘
oF

ou ‘

 
� A

0
‘

Ag
ug

oF

oug
� oF
oC‘

!
:

The solutions of Eq. (11) are

c1;2 ¼
a2 þ ia3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ ia3Þ2 � a1ða4 þ ia5Þ

q
a1

; ð12Þ

a3, and a4 come from the shear stress terms in Eq. (6).

For inviscid flow, a3 ¼ a5 ¼ 0. From Eq. (12) the inertia
terms in a4 are instability factors, but gravity and surface
tension terms are stability factors.

3.2. Constitutive equations

The fully developed stratified gas–liquid two-phase

flow was solved to obtain h; u‘; ug by using Taitel and
Dukler’s method, and the geometrical parameters, such

as A‘; Ag; S, etc., were obtained simultaneously. Taital
and Dukler [11], Brauner and Maron [7] gave some

formulas for calculating these geometrical parameters.

The shear stress s is a key parameter to solve the
equation. Here we used the pseudo-steady assumption,

that means the shear stress only related to the fully de-

veloped solution

sg ¼ fgqg
u2g
2
;

s‘ ¼ q‘f‘
u2‘
2
; ð13Þ

sg ¼ fg
qgðug � u‘Þ

2

2
;

fg; f‘ were defined, respectively, by the following Blasius
equation:

fg ¼ cg
Dgug
vg

� ��ng
; f‘ ¼ c‘

D‘u‘
v‘

� ��n‘
;

D‘ ¼ 4A‘=S‘; Dg ¼
4Ag
Sg þ S‘

;

ð14Þ

cg ¼ c‘ ¼ 16, ng ¼ n‘ ¼ 1 for laminar flow; cg ¼
c‘ ¼ 0:046, ng ¼ n‘ ¼ 0:2 for turbulent flow. f‘ was given
by Kowalski [12] as follows:

f‘ ¼ 2 0:804ðRe	gÞ
�0:285

h i2
; ð15Þ

where

Re	g ¼
Dgug
mg

:
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3.3. Calculating procedure

Eq. (11) is a quadratic equation with complex coef-

ficients. It is very easy to find the solutions to it. The

calculated sequence is given as follows:

• Input the known parameters including gas and liquid

flow rates and geometrical parameter.

• Solving the fully developed stratified gas–liquid flow

for h; ug; u‘.
• Calculating the coefficients of Eq. (11).

• Solving Eq. (11) to obtain the results.

It is noted that in the calculation, air was used as gas

phase, water as liquid phase, and the pressure of flow

system is atmospheric pressure.

3.4. Results

Fig. 2 shows the effects of superficial velocity of liq-

uid on the amplification factor. From Fig. 2(a), it is seen

that there is a maximum value for each curve. This value

stands for the amplification factor of the fastest growing

waves, ðKc‘Þmax. The wavelength of the fastest growing
waves is represented by kmax. ðKc‘Þmax decreases very
rapidly as the liquid superficial velocity decreases. The

points at which Kc‘ becomes zero are defined as the
neutral stability points, PN, the corresponding wave-

length of the waves is defined as the neutral wave

wavelength, kN, tending to be smaller when the liquid
superficial velocity U‘s increases. An enlarged picture is

shown in Fig. 2(b) to show the behavior at a low am-

plification factor. In this figure, the details in the vicinity

of neutral stability can be observed. When U‘s equals 0.1

or 0.05 m/s, Kc‘ < 0 for the whole range of wavelengths,
and it means that any disturbance on the two-phase

interface will decay with time in this case and the flow is

stable.

Fig. 3 shows the effects of the gas superficial velocity

Ugs. The effect is very similar to that of U‘s. With in-

creasing the Ugs, ðKc‘Þmax increases, while kN decreases
and the neutral point moves to the left.

The effect of tube inclination b (positive for down
flow) on the amplification factor is shown in Fig. 4.

Apparently upward flow is less stable than downward

flow, and tube inclination has an effect on the neutral

stability point PN and the fastest growing wave wave-
length kmax. With increasing tube inclination b (from

downward flow to upward flow), kmax decreases and PN
moves to the left.

Fig. 2. Effect of U‘s on the amplification factor (Ugs ¼ 5 m/s,
b ¼ 0�, l ¼ 7:97� 10�4 Pa s, r ¼ 0:072 N/m).

Fig. 3. Effect of Ugs on the amplification factor (U‘s ¼ 0:6 m/s,
b ¼ 0�, l ¼ 7:97� 10�4 Pa s, r ¼ 0:072 N/m).

Fig. 4. Effect of b on the amplification factor (Ugs ¼ 5 m/s,
U‘s ¼ 0:6 m/s, l ¼ 7:97� 10�4 Pa s, r ¼ 0:072 N/m).
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Liquid viscosity has different effects on the amplifi-

cation factor Kc‘ from those of other parameters, as seen
in Fig. 5. With increasing liquid viscosity, Kc‘ increases,
kmax decreases, and the neutral stability point PN moves
to the left. But when liquid viscosity equals

3� 10�2 Pa s, the amplification factor Kc‘ decreases,
curve 4 in Fig. 5, its characteristics are just the same as

those of curve 2 with liquid viscosity 7:97� 10�4 Pa s.
Further calculated results are shown in Fig. 8.

Fig. 6 shows the effects of surface tension on the am-

plification factor, greatly altering the values of Kc‘ es-
pecially the wavelength of the fastest growing waves and

the neutral stability point. With increasing surface ten-

sion,Kc‘ decreases, kmax increases and the neutral stability
point moves to the right. But the surface tension has a

great influence on Kc‘ only within a short wavelength re-
gime. When the wavelength reaches a certain large value,

there are no explicit differences between curves 1, 2, and 3.

The effects of gas and liquid superficial velocity on the

characteristics of interfacial waves are given in Fig. 7.

Within the range in which we are interested, with in-

creasing Ugs and U‘s;Kc‘ increases and kmax; kN decrease

as the increase of Ugs and U‘s. The kmax remains 20 when
U‘s equals 0.1 m/s and Ugs is less than 9 m/s, which means
under this condition there are no notable maximum

points in the amplification curve, such as curves 2, 3, and

4 in Fig. 2(b).

Fig. 8 shows the effects of liquid viscosity on the above

parameters. The influences of liquid viscosity on

ðKc‘Þmax; kmax; kN are very complex. When the liquid
viscosity is in a certain regime, referring to Fig. 8, ðKc‘Þmax
decreases, kmax and kN increase, but beyond this regime,
ðKc‘Þmax increases, kmax and kN decrease. The effects of
liquid viscosity on the amplification factor of interfacial

waves are very puzzling. It is generally known that the

higher the liquid viscosity is, the more stable the flow is.

According to the traditional theory, anyflowwill be stable

when the liquid viscosity is high enough. However, with

increasing liquid viscosity, we found that the liquid

holdup increased firstly, and at a certain liquid viscosity, it

decreased suddenly, and then increased. Up to now, we

did not find a reasonable explanation for these results.

This needs further investigations.

4. Non-linear interfacial stabilities analysis

As known from the above section, the linear stability

analysis can be only used to distinguish that an interface

Fig. 5. Effect of liquid viscosity on the amplification factor

(Ugs ¼ 5 m/s, U‘s ¼ 0:6 m/s, b ¼ 0�, r ¼ 0:072 N/m).

Fig. 6. Effect of surface tension on the amplification factor

(Ugs ¼ 5 m/s, U‘s ¼ 0:6 m/s, b ¼ 0�, l ¼ 7:97� 10�4 Pa s).

Fig. 7. Effect of Ugs on ðKc‘Þmax; kmax; kN (b ¼ 0�, l ¼ 7:97 �
10�4 Pa s, r ¼ 0:072 N/m).
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is stable or not, but not to obtain the details of devel-

opment of the disturbance on the interfacial surface. The

characteristics of the formation and growing up of the

disturbances or dynamic process on the interface have to

be analyzed by non-linear methods. In the following

sections, we have attempted to do this from the complete

two-fluid model.

4.1. Non-linear equation and their characteristic equations

For a gas–liquid two-phase inclined stratified flow, as

shown in Fig. 1, the following assumptions were intro-

duced:

• no heat and mass transfer between two phase;

• no phase change occurs;

• both gas and liquid are incompressible, and the gas

phase can be considered at quasi-steady-state con-

dition.

The set of non-linear equations was be deduced by

omitting the pressure terms in the momentum equation

from the one-dimensional equations of a two-fluid

model as follows:

oh
ot

þ u‘
oh
ox

þ A‘
A‘

ou‘
ox

¼ 0; ð16Þ

G
oh
ox

þ ou‘
ot

þ u‘
ou‘
ox

� r
q‘

o3h
ox3

þ E ¼ 0: ð17Þ

Here,

A0‘ ¼
dA‘
dh

;

G ¼
ðq‘ � qgÞd cos h

q‘

�
qgA

2j2gA
0
‘

q‘A3g
;

E ¼ �Df
q‘

;

Df ¼ � s‘S‘
A‘

þ sgSg
Ag

þ siSi
1

A‘

�
þ 1

Ag

�
þ ðq‘ � qgÞg sin h:

Because the surface tension r has less influence on the
neutral instability condition and the interfacial waves

have a large wavelength compared to the liquid film

thickness in the range of parameters studied, and the

effects of the surface tension r can be neglected [13]. So
Eqs. (16) and (17) become a set of standard non-linear

hyperbolic governing equations and can be rewritten as

oY
ot

þ Z oY
ox

þ F ¼ 0; ð18Þ

where

Y ¼ ½h; u‘�T;

F ¼ ½0;E�T;

Z ¼ u‘ A‘=A0‘
G u‘


 �
:

Two characteristic values of matrix Z are as follows:

k1 ¼ u‘ þ ðGA‘=A0‘Þ
1=2

;

k2 ¼ u‘ � ðGA‘=A0‘Þ
1=2;

ð19Þ

k1; k2 are, respectively, corresponding to the two prop-
agation velocities of disturbances in physics. When

k2 > 0, the flow is supercritical flow; when k2 < 0, the
flow is sub-critical flow.

Assume D ¼ jDijj is the matrix for characteristic
vector of matrix Z [14,15], that is,

DZ ¼ KD; ð20Þ
where

K ¼ k‘ 0
0 k2


 �
;

D ¼ 1=B 1
1=B �1


 �
;

B ¼ A‘

A0‘G

� �1=2
:

By multiplying Eq. (18) by the matrix for characteristic

vector D on the left-hand side, a set of characteristics

equations was deduced and the form of fractions as

follows:

Fig. 8. Effect of l on ðKc‘Þmax; kmax; kN (Ugs ¼ 10 m/s, b ¼ 0�,
r ¼ 0:0723 N/m).
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For the first characteristic value dx=dt ¼ k1,

oh
ot

þ k1
oh
ox

þ B ou‘
ot

�
þ k1

ou‘
ox

�
þ BE ¼ 0: ð21Þ

For the first characteristic value dx=dt ¼ k2,

oh
ot

þ k2
oh
ox

þ B ou‘
ot

�
þ k2

ou‘
ox

�
þ BE ¼ 0: ð22Þ

4.2. Difference scheme for characteristics equations

Because the characteristics equations derived are

strong non-linear ones, the two characteristic values of

the equations are variable to be solved, and it is very

difficult to construct the difference scheme by the typical

characteristics method. An improved and simplified

characteristics line method was employed to discretize

the characteristics equation (21) or (22) [14].

By using difference scheme for time variable, that is,

oh
ot

¼ h
nþ1
i � hni

Dt
;

ou‘
ot

¼ ðu‘Þnþ1i � ðu‘Þni
Dt

:

ð23Þ

By using upwind difference scheme for space vari-

ables, that is,

ki
oh
ox

¼
ki
Dx ðhni � hni�1Þ; ki P 0;
ki
Dx ðhniþ1 � hni Þ; ki < 0;

(

ki
ou‘
ox

¼
ki
Dx ½ðu‘Þ

n
i � ðu‘Þni�1Þ; ki P 0;

ki
Dx ½ðu‘Þ

n
iþ1 � ðu‘Þni Þ; ki < 0:

( ð24Þ

Eqs. (21), (22) can be discretized by using Eqs. (23), (24)

and be combined to seek for their solutions, then the

values of h, u‘ at next time step can be obtained as fol-
lows:

When k2 P 0

hnþ1i ¼ hni �
ðk1Þi þ ðk2Þi

2

Dt
Dx

hni
�

� hni�1
�

� Bi½ðk1Þi þ ðk2Þi�
2

Dt
Dx

ðu‘Þni
�

� ðu‘Þni�1
�
; ð25Þ

ðu‘Þnþ1i ¼ ðu‘Þni �
ðk1Þi þ ðk2Þi

2Bi

Dt
Dx

hni
�

� hni�1
�

� ðk1Þi þ ðk2Þi
2

Dt
Dx

ðu‘Þni
�

� ðu‘Þni�1
�
� DtEi:

ð26Þ
When k2 < 0

hnþ1i ¼ hni �
Dt
2Dx

ðk2Þihniþ1
�

þ ½ðk1Þi � ðk2Þi�hni � ðk1Þihni�1
�

� BiDt
2Dx

�
� ðk2Þiðu‘Þ

n
iþ1 þ ½ðk1Þi þ ðk2Þi�ðu‘Þ

n
i

� ðk1Þiðu‘Þ
n
i�1
�
; ð27Þ

ðu‘Þnþ1i ¼ ðu‘Þni �
Dt
2BiDx

�
� ðk2Þihniþ1 þ ½ðk1Þi

� ðk2Þi�hni � ðk1Þihni�1
�
� Dt
2Dx

ðk2Þiðu‘Þ
n
iþ1

�
þ ½ðk1Þi � ðk2Þi�ðu‘Þ

n
i � ðk1Þiðu‘Þ

n
i�1
�
� DtEi;

i ¼ 1; 2; 3; . . . ;N ; n ¼ 0; 1; 2; . . . ;M � 1: ð28Þ

The stability criterion of the above difference scheme

for space and time variables is given below [14,15]

Dt <
Dx

max jkij
:

4.3. Method and procedure for simulation

4.3.1. Boundary conditions

For k2 > 0, because all of the disturbances will
spread out to backward positions, the boundary con-

dition at x ¼ 0 is the initial value at t ¼ 0, the right
boundary considered as an infinite, or Dx � N large

enough.

For k2 < 0, the disturbances corresponding to the
eigenvalue will spread out forwardly to upstream. At

x ¼ 0, because k1 > 0, this characteristics equation
become invalid. Therefore, the boundary condition has

to be added to the equation. In practice we can con-

sider j‘ (the superficial liquid velocity) as a constant at
x ¼ 0.

4.3.2. Solving procedure

(a) set the initial conditions at t ¼ 0:

hðDxi; 0Þ ¼ hþ h0; i ¼ 0; 1; 2; . . . ;N ;
u‘ðDxi; 0Þ ¼ u‘ þ u0‘; i ¼ 0; 1; 2; . . . ;N ;

(b) to obtain the geometric parameters and the

coefficients of Eqs. (25)–(28),

(c) to solve the function values at next step of time

by using the combination of Eqs. (25), (26) or (27),

(28) according to the positive or negative of eigen-

value k2,
(d) to repeat (b) and (c) until certain time steps

required are reached.

4.4. Results and discussion

4.4.1. Experimental results

By using two-parallel conductance probes, the in-

stantaneous film thickness of a gas–liquid two-phase

flow was measured experimentally in a horizontal

Plexiglas pipe of 50 mm inner diameter. The character-

istics including the initiation of the various interfacial

wave patterns, the processes of growing up and devel-

opments of interfacial waves were investigated, and

several wave patterns were distinguished through

statistical analysis of signals of film thickness. The
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detailed descriptions of the experiments and measure-

ments were given in [16].

Fig. 9 shows the experimental results of wave pat-

terns, flow patterns and their transitions obtained by

authors and the comparisons with available results in

[17,18], respectively obtained in a horizontal pipe of 50

mm and 25.2 mm inner diameter. In Fig. 9 SS represents

the smooth stratified flow, 2D the two-dimensional

waves, LA the irregular large amplitude waves, AT a

new flow pattern of atomization, ANU the annular flow,

and SLUG the slug flow. It was found that the tran-

sitions from each stratified wave pattern coincide ap-

proximately with those reported in previous works

except for the slug flow transition boundary. Fig. 9 also

illustrates the calculation results from linear stability

analysis and the calculation curve 1 for h ¼ 0:5. The
inception of large amplitude waves can be determined by

the neutral stability criterion in the Viscous Kelvin–

Helmholtz (VKH) analysis, shown in Fig. 9, that the

disturbances on interface will decline and fall with time

increase in the left side region of curve 1 where the

amplification factor KcI < 0, and the disturbances on
interface will be amplified with time increase in the right

side region of curve 1 where the amplification factor

KcI > 0. The inception of annular flow can be deter-

mined by the neutral stability criterion in the Inviscid

Kelvin-Helmholtz (IKH) analysis, that is, the dis-

turbances on interface will decline and fall with time

increase because the amplification factor KcI < 0 in the
left side region of curve 2 and the disturbances on in-

terface will be amplified with time increase in the right

side region of curve 2 where the amplification factor

KcI > 0.

4.4.2. Results of non-linear analysis

Figs. 10 and 11 show the calculation results of the

variation and development of the disturbances on a gas–

liquid two-phase flow interfacial surface within a hori-

zontal straight tube having an inner diameter of 50 mm,

which is obtained by the non-linear analysis. The curves

of t ¼ 0 stand for the initial conditions for every case,
where the initial disturbances were produced in the nu-

merical simulations by adding a sine wave disturbance

to the steady-state values of liquid film thickness and the

disturbance amplitude was 5% of the steady-state values.

In these figures all of the time intervals between two

curves are 3 s, however, 0.5 s in Fig. 10(d). The time step

was taken as Dt ¼ 0:1 s and the space step Dx ¼ 0:25 m
in calculations.

Fig. 10 shows the propagation characteristics of in-

terfacial disturbance with time increases at superficial

gas velocity jg ¼ 1 m/s as the liquid velocity changes.

Fig. 9. The interface wave patterns and flow patterns of gas–

liquid two-phase flow in a horizontal pipe. (�): results of
authors; (N): results of [6]; (.): results of [7]. 1: Eq. (1),

c ¼ cVN; 2: Eq. (1), c ¼ c‘n; 3: h ¼ 0:5.

Fig. 10. The propagation and growth of interfacial disturbances in space with time under low gas velocity (jg ¼ 1 m/s). (a) j1 ¼ 0:01
m/s; (b) j1 ¼ 0:12 m/s; (c) j1 ¼ 0:2 m/s; (d) j1 ¼ 0:3 m/s.
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Figs. 10(a)–(c) correspond to the sub-critical flow. The

initial disturbances can be decomposed into two sets of

waves in which one propagates in the upstream direction

and the other propagates in the downward flow direc-

tion. The wave propagating upstream, that is, the first

set of waves always becomes wider and its peak value

becomes lower and declines gradually. However, the

characteristics of wave propagating in the downward

flow direction, that is, the second set of waves, change

with the liquid velocity. Fig. 10(a) represents the case in

which the second set of waves gradually declines during

the propagation process. All of the disturbances existing

on the interface become gradually feeble with increasing

time because the amplification factor of interfacial waves

KcI < 0 and the interface is smoothly stratified (SS). Fig.
10(b) illustrates the case near neutral stability wave in

which the wave amplitude of the second set of waves

does not change with time and correspond to the case of

KcI ¼ 0. Fig. 10(c) shows the case in which the wave
amplitude of the second set of waves becomes gradually

larger with increasing time up to GA1=A01 < 0 and then ki
becomes complex and the method of characteristic lines

loses effectiveness. According to the investigations in

[13,19] the interfacial disturbance rapidly grew up in this

case, and would block the pipe and form slug flow when

h > 0:5. Fig. 10(d) corresponds to the supercritical flow.
The amplification factor of the second set of waves

always KcI > 0, and the interface becomes more unsta-
blewith increasing time. By comparingFig. 10withFig. 9,

both having exactly the same operation conditions, it is

found that the results of non-linear analysis coincide

with the experimental data very well.

Fig. 11 shows the propagation characteristics of in-

terfacial disturbance with time increases for high

superficial gas velocity which means a very thin liquid

film (generally h < 0:5). Clearly, the interfacial distur-

bance declines gradually with time, and the influenced

region of disturbance always becomes wider and its

wave amplitude lower at j1 ¼ 0:01 m/s. When j1 ¼ 0:05
m/s, the disturbance becomes gradually weak and the

interfacial wave splits during the process of propagation

although the splitting phenomenon is not apparent;

when j1 ¼ 0:1 or 0.2 m/s, the wave splitting phenomenon
is very explicit, and the disturbance becomes gradually

large with time. The wave behaves like an isolated one

and becomes a large amplitude wave on the gas–liquid

interfacial surface [13]. Fig. 11 correspond to the four

cases shown in Figs. 9(e)–(h). From the comparison of

Fig. 11 with Fig. 9, the results of non-linear analysis

coincide also with the experimental data very well.

However, the results of linear stability analysis in this

region show that the amplification factor by VKH

method is KcI > 0, but the amplification factor by IKH
method is KcI ¼ 0. Very clearly, the non-linear stability
analysis can give more detailed characteristic descrip-

tions and dynamical information on the propagation

behaviors of interfacial disturbance.

5. Conclusion

1. The conclusions reached from linear analysis are as

follows:

• Phase velocity has a great effect on Kc‘; kmax and kN.
With increasing phase velocity Kc‘ increases, and kmax
and kN decrease accordingly.

• The tube inclination also has an effect on Kc‘; kmax
and kN. From downward flow to upward flow Kc‘ in-
creases, and kmax and kN decrease.

• Surface tension is a stable factor of the interface.

With increasing surface tension, Kc‘ decreases, but
kmax and kN increase.

Fig. 11. The propagation and growth of interfacial disturbances in space with time under high gas velocity (jg ¼ 10 m/s). (a) j1 ¼ 0:01
m/s; (b) j1 ¼ 0:05 m/s; (c) j1 ¼ 0:1 m/s; (d) j1 ¼ 0:2 m/s.
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• The effect of liquid viscosity is very complicated and

more further investigation is highly needed.

2. A set of non-linear hyperbolic governing equations

was deduced from the complete two-fluid model equa-

tion by omitting the effect of the surface tension and

assuming a quasi-steady-state for the gas phase. The

propagation and growth of the interfacial disturbances

were investigated by using the numerical method in

terms of gas and liquid superficial velocities. The com-

parison of the results by non-linear stability analysis

with those obtained from the linear stability analysis and

experimental data was conducted. The non-linear

stability analysis not only confirms the conclusions

reached by the linear instability analysis, but also gives

an insight into the growth and propagation of the in-

terfacial disturbances on the interface of a gas–liquid

two-phase flow.

Acknowledgements

This work is currently supported by the National

Natural Science Foundation of China through contract

No. 59995460-2 and National Science Foundation of

China for Outstanding Young Scientist through con-

tract No. 59725616.

References

[1] T.B. Banjamin, Shearing flow over a wavy boundary,

J. Fluid Mech. 6 (1959) 161–205.

[2] J.W. Miles, On the generation of surface waves by shear

flows, J. Fluid Mech. 3 (1957) 185–204.

[3] T.J. Hanratty, A. Hershman, Initiation of roll waves,

AIChE J. 7 (1961) 488–497.

[4] T.J. Hanratty, J.M. Engen, Interaction between a turbulent

air steam and a moving water surface, AIChE J. 3 (1957)

299–302.

[5] H. Jeffreys, On the formation of water waves by wind,

Proc. R. Soc. A 107 (1925) 189.

[6] L.A. Jurman, M.J. Study of waves on thin liquid film

sheared by turbulent gas flows, Phys. Fluids A 1 (1989)

522–536.

[7] N. Brauner, D.M. Maron, Stability analysis of stratified

liquid–liquid flow, Int. J. Multiphase Flow 18 (1992)

103–121.

[8] D. Barnea, Y. Taitel, Kelvin–Helmholtz stability criteria

for stratified flow, viscous versus non-viscous (invisid)

approaches, Int. J. Multiphase Flow 19 (1993) 639–649.

[9] P.Y. Lin, T.J. Hanratty, Prediction of the initiation of slugs

with linear stability theory, Int. J. Multiphase Flow 12

(1986) 79–98.

[10] D. Giovine, Stability of liquid flow down an inclined tube,

Int. J. Multiphase Flow 17 (1991) 485–496.

[11] Y. Taitel, A.E. Dukler, A model for predicting flow regime

transitions in horizontal and near horizontal gas–liquid

flow, AIChE J. 22 (1976) 47–55.

[12] J.E. Kowalski, Wall and interfacial shear stress in

stratified flow in a horizontal pipe, AIChE J. 33 (1987)

274–281.

[13] D. Barnea, Y. Taitel, Interfacial and structural stability of

separated flow, Int. Multiphase Flow 20 (Suppl.) (1994)

387–414.

[14] X.M. Li, B. Ren, J.Q. Song, Parallel Algorithm and

Numerical Solution of Partial Differential Equation, The

University of Science and Technology for Defence Pub-

lishing Press, Changsha, China, 1990.

[15] J.M. Wang, Y. Sheng, Parallel Algorithm, National

Defence Industry Publishing Press, Beijing, China, 1992.

[16] G.J. Li, Investigation on the characteristics of interfacial

waves in gas–liquid two-phase flow through channels,

Dissertation for Ph.D degree, Xi’an Jiaotong University,

Xi’an, China, 1996.

[17] J. Shi, G. Kocamustafaogullari, Interfacial measurement in

horizontal stratified flow patterns, Nucl. Eng. Des. 149

(1–3) (1994) 81–96.

[18] N. Andrtsos, T.J. Hanratty, Interfacial instabilities for

horizontal gas–liquid flows in pipelines, Int. J. Multiphase

Flow 13 (5) (1987) 583–603.

[19] C.J. Crowley, G.B. Wallis, J.J. Barry, Validation of a one-

dimensional wave model for the stratified to slug flow

regime transition, with consequences for wave growth and

slug frequency, Int. J. Multiphase Flow 18 (2) (1992)

249–271.

1534 L.-J. Guo et al. / International Journal of Heat and Mass Transfer 45 (2002) 1525–1534


